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Abstract— Amyotrophic Lateral Sclerosis (ALS) is a fatal 

neurodegenerative disease that affects the nervous system 

causing muscle weakness, paralysis, leading to death. Given that 

abnormalities in spinal motoneuron (MN) excitability begin long 

before symptoms manifest, developing an approach that could 

recognize fluctuations in MN firing could help in early diagnosis 

of ALS. This paper introduces a machine learning approach to 

discriminate between ALS and normal MN firing. The approach 

is based on two electrophysiological markers; namely, spiking 

latency and the spike-triggered average signal. The method is 

examined using data generated from a computational model 

under systematic variation of MN properties. Such variations 

mimic the differential dynamic changes in cellular properties 

that different MN types experience during ALS progression. 

Our results demonstrate the ability of the approach to accurately 

recognize ALS firing patterns across the spectrum of examined 

variations in MN properties.   

Clinical Relevance— These results represent a proof of 

concept for using the proposed machine-learning approach in 

early diagnosis of ALS.  

I. INTRODUCTION 

Amyotrophic Lateral Sclerosis (ALS) causes rapid 
progressive degeneration of upper and lower motoneurons 
(MNs) [1]. The common symptoms of ALS are muscle 
weakness and fasciculations, and symptoms of dyspnea and 
dysphagia develop in later stages of the disease [1]. 
Importantly, more than half of the patients die within the first 
30 months and only 20% of the patients survive between 5 and 
10 years after symptom onset. One of the most critical 
challenges with ALS is the difficulty of making an early and 
accurate diagnosis. Because there is no specific criterion for 
ALS diagnosis in clinical practice, ALS is diagnosed by 
exclusion criteria. This elongates the duration between the 
onset of symptoms and diagnosis reaching on average 13–18 
months [1].  
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ALS pathogenesis involves numerous changes in the 
cellular properties of MNs, leading to changes in their firing 
activity [2]. Importantly, ALS affects the three types of MNs 
unequally: the Slow-twitch fatigue resistant (S) cells are the 
most resistant to the disease, the fatigue-resistant (FR) cells are 
more vulnerable, whereas the fast-twitch fatigable (FF) cells 
are the most vulnerable in the disease [3]. The change in MN 
soma size is one example of the differential alterations that 
occur across MN types early in ALS, in which disease-
vulnerable MNs (FR and FF types) were found to exhibit 
increased soma size unlike the disease-resistant MNs (the S 
type) [2]. Given these differential changes, the examination of 
firing properties of MN types could thus assist in early ALS 
diagnosis. 

In this paper, we propose a machine learning approach that 
aims – as a proof-of-concept – to detect the fluctuations in MN 
excitability as ALS progresses based on nerve activity. We 
examined the performance of the developed classification 
approach on simulated data generated from a high-fidelity 
computational model that simulates the MNs’ activity of the 
cat medial gastrocnemius (MG) muscle [4]. The model 
simulated the cellular changes recorded experimentally in each 
MN type in early ALS pathogenesis, some of which are 
disease changes while others are compensatory. Because it is 
unknown how these changes develop during early disease 
pathogenesis (i.e., separately or concurrently), we simulated 
them in the model individually and in combinations and 
analyzed each condition using the developed classification 
technique. We analyzed the firing activity at three levels: 1) 
MN pool activity, 2) MN-type activity, and 3) individual MN 
cells activity. Our results demonstrate the high potential of our 
proposed approach in differentiating between the control and 
the ALS conditions.  
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II. METHODS 

A. Model 

The multi-scale, high-fidelity computer model of the spinal 
MN pool innervating the MG muscle we published in [4] was 
used to simulate the firing behaviors of MNs under normal and 
ALS conditions. This pool model has 51 model cells with full 
representation of the anatomical and electrical properties of 
different MN types: S (13 cells), FR (13 cells), and FF (25 
cells) types, which have different vulnerability in ALS. Each 
model cell has somatic and dendritic ion channels that allow 
simulating the firing behaviors of MN types.  

Experimentally, a number of early (P10) cellular changes 
have been measured in G93A MNs long before symptom onset 
at P90: 1) soma size increase [2], 2) Ca persistent inward 
currents increase [5], and 3) SK currents reduction 
(unpublished data). Thus, to simulate ALS cellular changes, 
each of these changes have been included in the model with 
the same magnitude measured experimentally, one at a time 
and in combinations, to give the following conditions: ALS #1: 
Increased soma size of FR and FF MNs, ALS #2: Increased 
Ca2+ current of all MNs, ALS #3: Reduced SK current of FR 
and FF MNs, ALS #4: ALS #1 and #2 conditions combined, 
ALS #5: ALS #1 and #3 conditions combined, ALS #6: ALS 
#2 and #3 conditions combined, and ALS #7: ALS #1, #2, and 
#3 conditions combined. WT: control condition representing 
the normal state where model MN properties were unchanged.  

B. Data Preprocessing 

The data generated from the computational model includes 
extracellular recordings of pool activity, extracellular 
recordings of each MN type activity, and the spike trains of 51 
MN cells. Accordingly, we generated spike trains for both pool 
activity and MN-type activity, from the extracellular 
recordings. Two steps are involved in the generation of spike 
trains from extracellular recordings. The first step is the 
detection of compound action potentials (coAPs) generated as 
a result of each stimulus trigger in the data. The second step is 
generating a spike at the peak of each detected coAP. The 
detection step starts by determining the beginning of the coAP, 
which is assumed to be the time instant of the stimulus onset.  
We then identify the peak of the coAP in a 5ms interval from 
the stimulus onset [6]. The coAP duration is set as 2 × (tp – ts), 
where tp is the time instant at which the peak of coAP occurs 
and ts is the stimulus onset. The durations of all detected coAPs 
are then unified to have the longest coAP duration. The step of 
spike train generation is implemented by creating a zero vector 
with the same length of the extracellular signal, and then ones 
are inserted at the time instants of the detected peaks (spikes).  

C. Spike Train Markers 

Spike trains are analyzed by examining two 
electrophysiological markers. The first marker is the spiking 
latency, which is the time interval between each spike and the 
onset of the immediately preceding stimulation pulse [7]. The 
second marker is the Spike-Triggered Average (STA), which 
represents the stimulus signal preceding each spike averaged 
across a number of stimulation pulses computed as [8] 

STA = 
1

𝑛
 ∑ 𝑦𝑖

𝑛
𝑖=1            (1) 

where n is the number of pulses considered in the average, yi 

is a window of the stimulation vector corresponding to the time 
interval ending by the timestamp of spike i. 

D. Classification Approach 

Our first step in the classification task is to split each spike 
train into fixed-size 200ms segments. Latency and STA are 
extracted from each segment, where each segment represents 
a single data point. Principal Components Analysis (PCA) is 
then applied to all data points [9]. We employ PCA as a 
dimensionality reduction step to find a better representation of 
the data neglecting the components with the least variability.  

The next step is the classification stage in which we 
perform binary classification between the wild-type (WT) and 
each ALS case using Support Vector Machine (SVM) 
classifier. SVM is a supervised classification technique which 
is based on searching for a hyperplane with the maximum 
margin among the support vectors that can be achieved by 
minimizing the following objective function [10] 

𝐽 = ∑ 𝛼𝑖
𝑙
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1
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where xi is an input vector, 𝑦𝑖  is a class label, 𝛼𝑖 is a Lagrange 
multiplier, K is the kernel function, and l is the total number of 
input vectors. In our work, we used the radial basis kernel. 

In our analysis, we performed 150-fold cross-validation 
where data points are divided by the ratio of 90% for training 
and 10% for testing. The points selection for training/testing is 
randomized over each fold. The performance of the approach 
is assessed using the classification accuracy computed for the 
testing datasets averaged across the 150 folds. 

III. RESULTS 

A.  Dataset and Extracted Markers 

The spiking behavior of different ALS conditions versus 
WT was investigated by running a 5-second-long simulation 
over 51 model MNs. To simulate ventral root electrical 
stimulation, the modeled MNs were stimulated via 100 stimuli 
of synchronous synaptic activation of 25Hz and 1ms 
stimulation frequency and time, respectively. Consequently, a 
single coAP is elicited for every synaptic stimulus in which 
ALS firing was observed to lag WT firing (Fig. 1a). The coAP 
signal was further analyzed to generate the pool firing in which 
a spike is detected for each coAP (Fig. 1b). Thus, each spike 
represents the total activity of the underlying 51 cells 
population. The figure demonstrates the lag in firing of the 
ALS pool compared to WT.  

Given that ALS affects MN types differently, we also 
analyzed the spike trains of each cell type (S, FR and FF). Fig. 
1c illustrates the MN-type spiking in which the spiking of all 
neurons corresponding to each type is represented with a 
single spike. These spikes were extracted from the coAP of 
each MN type computed in the model. The final level of our 
analysis examined spiking of each of the 51 model cells 
separately. Fig. 1d illustrates the spiking of a sample set of the 
first 5 cells for each type in which fast cells fire before small 
cells consistent with electrical stimulation reversed 
recruitment of MNs [11]. Consistent with the observations in 
Fig. 1a-c, a significant difference in individual cells’ firing 
time could be seen in ALS vs. WT.  
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Figure 1. Outline illustrating different levels of data analysis. (a) coAP 
recording in response to 1 synaptic activation stimulus for WT (blue) and 

ALS (red). (b) Pool spikes. (c) MN-type spikes. (d) Sample single cell spikes. 

In our work, we have investigated Peristimulus Time 
Histogram (PSTH), Inter-Spike Interval (ISI) histogram, 
Spiking latency and STA for each ALS condition followed by 
the classification technique to discriminate between ALS and 
WT datasets. However, we are reporting here the results of the 
latency and STA markers only given the significant effect 
different ALS conditions had on them compared to the PSTH 
and ISI. Fig. 2 illustrates the mean spiking latency for pool 
firing (Fig. 2a), MN-type firing (Fig. 2b), and single cell firing 
(Fig. 2c). The largest difference in spiking latency seen in the 
pool firing was between WT vs. ALS #1 and ALS #5 
conditions (Fig. 2a, ~0.025ms). A difference in latency was 
also seen between the pool firing of WT vs. most of the other 
ALS conditions, but not as strong. Larger differences emerged 
at the MN-type and single cell firing levels. For instance, the 
difference in latency between the firing of S MN-type in WT 
vs. ALS #6 condition was 0.81ms (Fig. 2b). At the single cell 
level, a difference in latency of 14.69ms was observed in the 
firing of the 13th S cell in WT vs. ALS #6 condition.   

ALS cellular changes also had a clear impact on the 
extracted STA of the pool firing (Fig. 3a), MN-type firing (Fig. 
3b), and single cell firing (Fig. 3c). The variations can be 
mainly observed in the first time instant at which the STA 
reaches its peak value (i.e. first-peak time). Similar to the 
variations in latency, more differences in STA first-peak time 
could be observed at the MN-type firing and single cell firing 
as illustrated in Fig. 3b and Fig. 3c, respectively, compared to 
the pool firing (Fig. 3a). For instance, the mean difference in 
first-peak time between WT and ALS #3 condition is 1.2ms. 
In sum, the above data suggest that spiking latency and STA 
features could be used as markers to differentiate between WT 
and ALS conditions from firing behaviors.  

B. Pool Firing Analysis 

We first examined the performance of the classification 
approach when analyzing the pool firing. Each single spike in 
the pool firing represents the total pool activity of all 51 MNs 
combined for each stimulation pulse. These spikes were 
analyzed by extracting the latency and STA markers. STA-
computed markers were then fed to PCA for dimensionality 

reduction and better representation. The projections on the first 
two principal components were finally provided to the SVM 
classifier for classification. For the latency, given that it 
represents a single dimensional data in this case, it was 
provided directly to the classifier. 

Fig. 4 illustrates the mean accuracy over multiple cross-
validation folds, where the data points were shuffled among 
the training and testing datasets. The figure demonstrates the 
performance of the approach in discriminating between WT 
and all ALS conditions. The increase in soma size (ALS #1 
condition) had the largest mean accuracy of 98 ± 2.8% and 95± 
6.2% for the latency and STA markers, respectively. The mean 
classification accuracy was also >95% for ALS condition #5 
using both markers. In terms of differences in performance, a 
statistical significance, yet not consistent, is observed in most 
of the conditions as shown in Fig. 4 comparing the accuracy 
achieved for latency versus STA. The mean accuracy across 
all conditions was 65 ± 7.1% for latency and 68 ± 10.9% for 
STA markers.  

While high accuracy was achieved for some ALS 
conditions, lower accuracy was observed for other conditions, 
such as ALS #4 condition as shown in Fig. 4. This poor 
performance could be explained by the counter-effects caused 
by these conditions on MN firing. For instance, ALS #1 
condition leads to increased firing latency for the ALS pool    
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Figure 2. Mean spiking latency for (a) pool firing, (b) MN-type spikes, and 

(c) single cell spikes under different conditions. 
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Figure 3. Average STA of (a) pool firing, (b) peak time computed for MN-

type spikes, and (c) peak time computed for single cell spikes. 



  

 
Figure 4. Classification accuracy for pool firing analysis for different 
conditions using both the latency and STA markers. *P < 0.05, **P < 1e-10, 
***P < 1e-20, Wilcoxon rank-sum test. 

compared to WT, whereas ALS #2 leads to a decreased latency 
(Fig. 2a). As a result, a net effect of no significant change in 
ALS pool firing latency vs. WT might be observed. Therefore, 
further analysis is required to be able to discriminate between 
ALS and WT cases in these conditions.  

C. MN-Type Firing Analysis 

Given the performance drop observed in some conditions 
when analyzing the pool firing, we next investigated whether 
analyzing the activity of each MN type could succeed in 
achieving higher classification accuracy. We hypothesized 
that such analysis would result in better performance given the 
differential vulnerability different cell types have in ALS. In 
this analysis, the coAP of each MN type generated from the 
model was used. Three spike trains are then obtained 
corresponding to the three MN types, where each spike 
represents the activity of all cells of each type. The entire 
process of feature extraction, PCA and SVM was then applied. 

Fig. 5 shows the mean classification accuracy over 
multiple cross-validation folds of MN-type data points for 
training and testing sets. The figure demonstrates an overall 
better performance compared to the pool firing case for the 
ALS #3 and ALS #4 conditions. A mean accuracy of 97.63 ± 
3.1% and 97.07 ± 3.08% is achieved for ALS #3 and ALS #4 
conditions using the latency marker, respectively. By 
identifying the maximum mean accuracy achieved for each 
ALS condition and averaging across all conditions, a mean 
accuracy of 98.63 ± 1.93% and 97.9 ± 3.73% was achieved for 
the latency and STA markers, respectively. This indicates that 
using MN type-based spike trains outperforms using the pool 
firing markers as input to the classification technique.  

D. Single Cells Firing Analysis 

We finally analyzed the performance of the classification 
approach when applied to single cell firing. In this case, spike 
trains of all 51 cells were used to extract the latency and STA 
markers. Fig. 6 illustrates the mean classification accuracy 
over multiple cross-validation folds. In this figure, the 
accuracy achieved for the cells of the same type was averaged 
across cells. The figure shows comparable performance to that 
achieved for MN type firing analysis with a mean accuracy 
across all conditions of 97.94 ± 2.84% and 96.45 ± 5.54% for 
the latency and STA markers, respectively. It should be noted 
though that decomposing the coAP to extract the firing of each 
of the 51 cells using current state-of-the-art decomposition 
methods is challenging in practice.  

IV. CONCLUSION 

We introduced a classification approach that could 
differentiate between WT vs. ALS motoneuron firing patterns. 
Our analysis identified two electrophysiological markers that 
could be used to discriminate between the two cases, which are 
the spiking latency and STA. Our results demonstrated the 
ability of the classification approach to classify the extracted  

 
Figure 5. Classification accuracy for MN-type spiking analysis for different 
conditions using both the latency and STA markers. *P < 0.05, **P < 1e-10, 

***P < 1e-20, Wilcoxon rank-sum test.  

 
Figure 6. Classification accuracy for single cell firing analysis for different 

conditions using both the latency and STA markers. *P < 0.05, **P < 1e-10, 

***P < 1e-20, Wilcoxon rank-sum test. 

markers with a ~99% accuracy in many cases. No significant 
difference in the accuracy was observed between the two 
markers. These results indicate that the proposed approach 
could open new realms for accurate early ALS diagnosis that 
ought to be verified using animal and/or human data.  
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